National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Measurement of weak magnetic field in 3D space
Bár, Martin ; Klusáček, Stanislav (referee) ; Havránek, Zdeněk (advisor)
The aim of this thesis is to theoretically examine the magnetic field of miniature cylindrical NdFeB magnets, compare the simulation results to real-world measurements, and design a magnetic field probe using suitable sensors. A FEM simulation was conducted using Ansys AIM and FEMM 4.2. The simulation shows that the magnetic induction on the surface of the magnet depends on the diameter/height ratio. The simulation results also show that 21 µm thick protective layer of Ni-Cu-Ni metal on the surface of NdFeB magnets lowers flux density of the smallest magnet sample (1x1 mm) by up to 14 %. It was also concluded that a larger magnet edge radius results in a higher flux density on the surface of the magnet. The biggest differences between simulation data and data measured by the F.W. BELL gaussmeter occurred in the smallest magnet sample. Using the FEMM 4.2 simulation software, a three-axis magnetic field probe was designed. Potential problems with this probe design have been identified. A simple procedure for probe calibration was proposed.
Magnetic field analysis with finite element method and magnetic sensor
Volf, Tomáš ; Kurfűrst, Jiří (referee) ; Skalka, Miroslav (advisor)
The magnetic field analysis by MKP and magnetic probe project deals with magnetic field analysis of asynchronous machine cross section. This analysis is written in detail along with the necessary theory of asynchronous machine and the ANSYS program. The magnetic field of selected machine is measured by magnetic probe and results are compared with calculation. The next part of thesis is draft of device for the magnetic field analysis.
Measurement of weak magnetic field in 3D space
Bár, Martin ; Klusáček, Stanislav (referee) ; Havránek, Zdeněk (advisor)
The aim of this thesis is to theoretically examine the magnetic field of miniature cylindrical NdFeB magnets, compare the simulation results to real-world measurements, and design a magnetic field probe using suitable sensors. A FEM simulation was conducted using Ansys AIM and FEMM 4.2. The simulation shows that the magnetic induction on the surface of the magnet depends on the diameter/height ratio. The simulation results also show that 21 µm thick protective layer of Ni-Cu-Ni metal on the surface of NdFeB magnets lowers flux density of the smallest magnet sample (1x1 mm) by up to 14 %. It was also concluded that a larger magnet edge radius results in a higher flux density on the surface of the magnet. The biggest differences between simulation data and data measured by the F.W. BELL gaussmeter occurred in the smallest magnet sample. Using the FEMM 4.2 simulation software, a three-axis magnetic field probe was designed. Potential problems with this probe design have been identified. A simple procedure for probe calibration was proposed.
Magnetic field analysis with finite element method and magnetic sensor
Volf, Tomáš ; Kurfűrst, Jiří (referee) ; Skalka, Miroslav (advisor)
The magnetic field analysis by MKP and magnetic probe project deals with magnetic field analysis of asynchronous machine cross section. This analysis is written in detail along with the necessary theory of asynchronous machine and the ANSYS program. The magnetic field of selected machine is measured by magnetic probe and results are compared with calculation. The next part of thesis is draft of device for the magnetic field analysis.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.